
School of Operations Research and Information Engineering

Ja Young Byun, Jolene Mei, Bennett Miller, Willem van Osselaer, Joe Ye, Eva Zhang, Jody Zhu
Advisor: Professor David Shmoys

Optimizing Cornell’s Final Exam Schedule

INTRODUCTION
❖ While finals are needed to test students’ mastery of course contents, 

they are a large contributor to stress and mental health issues among 

the student population. A better final exam schedule can effectively 

lower students’ burdens and grant them more time flexibility.

❖ To optimize the final exam schedule for Cornell students, we adopted 

methods and strategies from combinatorial optimization, which 

examines problems with a discrete set of feasible solutions. Our work 

was reflected for the first time in the Spring 2022 final exam schedule. 

Old Model No Frontload Spring 2022

Conflicts 0 0 0

Back-to-backs 2609 1451 1665

Triples 84 50 76

3 in 4 slots 415 232 271

Quads 2 1 2

FINAL RESULT

STEP 1: BLOCK ASSIGNMENT

MOVING FORWARD

STEP 3: POST-PROCESSING
❖ First, we assign each exam to one of 19 blocks. Exams in the same 

block will be held at the same time (the particular time is not yet 

known). We use integer programming to find a block assignment that 

minimizes conflicts.

❖ There can be multiple different block assignments with the same 

number of conflicts. Each of these solutions may lead to a very 

different count of back-to-backs after sequencing. Our integer program 

in step 1 does not necessarily return the optimal block assignment that 

will have the lowest number of back-to-backs (and other metrics).

❖ Post-processing is designed to remedy this problem in the form of a 

local search:

➢ Choose an exam that is causing a lot of back-to-backs.

➢ For each slot, check how many back-to-backs that exam would cause 

if it was assigned to that new slot.

➢ Move the exam to the slot where it would cause the least number of 

back-to-backs, all without increasing the number of conflicts.

➢ Repeat.

WHAT IS A SCHEDULE?

❖ After all exams have been assigned to a block, those blocks are then 

assigned to time slots. We do this by ordering the blocks.

❖ This is solved with another integer program whose objective is to 

minimize back-to-backs, triples, and a handful of other metrics. The 

integer program has variables tracking whether certain sequences of 3 

blocks are placed in a particular sequence of slots.

❖ Each combination of exams and time slots forms a unique schedule. 

There are 7 days, 19 time slots, and 553 exams this semester, resulting 

in 19553 possible schedules – exam scheduling is difficult.  

Fig.1. Left: a schedule is an assignment of exams to time slots; right: Reddit banter

Fig.2. Examples of metrics used to determine schedule quality

2

1 5 3

1

1 conflict
8 B2Bs

❖ For example, x
ijks

= 1 if block i is placed in 

slot s, block j is placed in slot s + 1, and 

block k is placed in slot s + 2.

Back-to-backs

Monday

Tuesday

Exam

Exam

Exam

Exam

Exam

Wednesday Exam

Monday

Tuesday

2:00
7:00
9:00
2:00
7:00

9:00

CRP 3348

ORIE 6334, MATH 1920

CS 1110, CS 2110

DSOC 1102, ORIE 3310

HADM 4300, EAS 1540

ENGRI 1101

Monday

Tuesday

Exam

Exam

Exam

Wednesday Exam

Monday

Tuesday

Exam 2Exam 1

Wednesday
Exam 2Exam 1

Conflicts Triples

❖ Our goal is to assign exams to time slots in a way that minimizes a 

number of metrics like the ones above. Back-to-backs and triples are 

further divided into subcategories that each carry a different weight.

❖ We transform our data into a graph with nodes being the exams and 

edges connecting exams that share students. The edge weights 

correspond to the number of co-enrolled students.

❖ Integer programming is a framework for representing and solving 

optimization problems. Integer programs have a linear objective 

function and constraints that are either linear or integer.

METHODS

STEP 2: SEQUENCING

5

3

2

18

7

1

1

4

8 5

Conflicts: 6

5

3

2

18

7

1

1

4

8 5

Conflicts: 0

Fig.3. Two block assignments: exam nodes in the same block have the same color

5

18

7

1
4

8 5

5

3

2

18

7

1

1

4

8 5

Order

B2Bs = 36

3

2

1

Order

B2Bs = 36 21

2

1 5 3

1

1 conflict
4 B2Bs

REPEAT
Fix order

Student 1 Student 2 Student 3

❖ Lastly, the University Registrar requested we limit the number of large 

exams at the end of the final exam period, which we call frontloading. 

We frontloaded the schedule while keeping the other schedule 

metrics as low as possible.

❖ Et voila! This is how the Spring 2022 final exam schedule was created 

with the help of combinatorial optimization.

❖ The scheduling process is still being improved for future semesters. 

We are experimenting with using another integer program to move 

multiple exams at a time during post-processing, finding a balanced 

min-cut among exam nodes to build a schedule in batches, and more!

Decision Variables

Objective Function

Constraints

Fig.4. Basic integer program for block assignment

Fig.5. Finding an improved sequence given a fixed block assignment

i
j

ks+2
s+1

s

The Wheel

Fig.6. Diagram of local search algorithm


